中国统计网

登录

首页

分类浏览

专题

专栏作者

问答

线下活动

企业招聘

app下载

投稿

注册




分析师与运营协作的9个好习惯
头像 胡晨川 数据分析
数据分析

最近两个月我将大量的精力放在了业务分析团队的组建和管理上。不断解决日常中遇到的协作问题,使我学到了一些分析技术以外的知识。由于人多事儿多,所以出现了不少很好的协作案例,值得推广。


1、分析师尽早介入业务。

1.webp.jpg

2、运营伙伴做好合理排期。


2.webp.jpg

3、及时反馈。

3.webp.jpg

4、利用现有数据源解决问题。


许多时候,我们并不是缺乏数据,而是“懒”,不去挖掘现有的数据集的潜力,导致分析师觉得有很多简单重复需求。

4.webp.jpg

5、过程中紧密沟通。


不要做“甲方乙方”,而要做“一条绳上的蚂蚱”。

5.webp.jpg

6、运营不是放大压力给分析师,而是帮助分析师减负。


从业务到分析,这个协作链条的上下游,天然就有“放大压力”的属性。比如运营任务deadline是7天,分析需求就会压缩到3天。更何况我当前所处的环境,很多事务都是1-3天,那么数据需求就大量的是1-2天期限,不少是当天需要完成。


6.webp.jpg

7、清晰的阶段性规划。


7.webp.jpg

8、主动地点对点培训。


大批量集中的技能型培训,实际上效果都非常差。真正有效的互相学习,还是自发形成的“一个愿打,一个愿挨”的点对点培训。要想办法创造这种环境:1.招聘自驱力强的人;2.鼓励事情做深做细;3.减少“贴膏药”的事情;4.对有难度的事,给予充分的时间。

8.webp.jpg

9、通过同理心来实现互相信任。


很多人会说,协作中的问题基本来自“信息不对称”。但以我目前的观察,信息不对称的根源是运营与分析师不够互相信任。如何增强同理心?目前我没有很好的方案,也许“时间能改变一切”?

9.webp.jpg

根据实际情况,再举几个典型的问题,是我们目前没有解决的。但我根据经验给出一些解决的方向,并正在向这个方向努力。希望有经验的读者能在回复中给我们一些好的启发!~


(1)对于取数型的任务(数据描述型的任务),搁置争议,先解决眼前的问题。

10.webp.jpg

(2)对于数据分析不能解决的任务,我们永远要追求“客观性”。一定不能出现“为了结果而分析”,更不能出现“包装结果”。

11.webp.jpg


这其实有两个方面:一是分析师能力不足,不能够解决某个业务问题;二是问题过大,超出数据分析的边界。面对第一种问题,通过换人或者外部请教,一般能解决。面对第二种,我暂时只能控制不出现“假分析”。


但这说起来容易做起来。。。谈何容易。


这点往往与第一点产生矛盾,业务方急着要分析结果,而分析师除了“猜”,不可能给出满意的分析结果。面对“强人所难”的情况,也是我最近“心累”的主要原因。



End.

作者:胡晨川(中国统计网特邀认证作者)



我要评论
验证码
  • 0
暂无评论

关注公众号

中国统计网微信公众号

微信公众号:cntongji

今日热议

专栏作者

  • 傅一平
    统计网特邀认证作者
    浙江移动大数据中心 数据管理部经理 博士 毕业于浙江大学 10多年数据从业经验,专注于大数据采集、处理、建模、管理、变现及产业等研究
  • 黄成明
    统计网特邀认证作者
    黄成明 ,零售数据分析研究者,拥有15年的销售及数据分析经验,历经美国强生公司、妮维雅公司、雅芳公司和鼎盛时期的诺基亚公司。目前是数据化管理的咨询顾问和培训师。他独立研发了基于周销售权重指数的零售管理模型,可以有效地进行目标管理、销售预测、客流预估、促销评估、销售预警等。
  • tommy
    统计网特邀认证作者
    数据落地应用探索者
  • 秦路
    统计网特邀认证作者
  • 数据海洋
    统计网特邀认证作者
    数据应用的实践者!
  • 张溪梦
    统计网特邀认证作者
    GrowingIO创始人&CEO,前LinkedIn商务分析总监
立即下载
版权所有: 统计网. Copyright © 2016 itongji.cn All Rights Reserved. 备案号:ICP备15042641号-3